Sunday, June 6, 2010

Video Solutions to Two Twitter SAT Problems of the Day

Please note correction to 2nd problem in the video. The correct answer is 4096 "real" values. The original answer, 13, applies to rational solutions only. Thanks to Nick Hobson for pointing out my careless error. Haste makes waste!!


Please vote in the poll at the right. Be candid in your opinion of these videos. It will guide me in the future to improve. Don't hesitate to share your opinions on MathNotationsVids and rate each video there as well. If you subscribe to my feed, please vote directly on the site. Only a few days left...


The title says it all so here is the video as promised:

Note: See above correction to 2nd problem! The video has not been corrected so beware!




Comments on 2nd problem:


If x is greater than or equal to 0 and less than or equal to 3, for how many values of x will 16^x be an integer?

As mentioned above, Nick pointed out my error. I should have restricted x to be of the form a/b, where a and b are integers, b ≠ 0. Normally, SAT questions avoid use of the term rational so they would spell it out. This problem however is very questionable for SATs. If real solutions were sought, this question would be more appropriate for a math contest. Here's one way of explaining why the answer is 4096 for real solutions:

16^x = k, k an integer → 2^(4x) = k
3 ≥ x ≥ 0 → 12 ≥ 4x ≥ 0 →  4096 ≥ 2^(4x) ≥ 1 since the exponential function 2^(4x) is increasing. This argument is reversible, so there are 4096 solutions for x, one of each integer value of k from 1 to 4096 inclusive. This solution could be written more concisely using log base 16 or log base 2 as Nick did, but I wanted to show a method without the log symbol.

Again, the video solution is WRONG as it shows only rational solutions! Well, at least i was thinking "rationally!"

I fully realize that the school year is over for some and about to end for others but these SAT Problems will be around for you or your students in perpetuity! Let me know if you like the questions. They are now appearing in the right sidebar of my blog so you will need to visit the page to see them.
-------------------------------------------------------------


"All Truth passes through Three Stages: First, it is Ridiculed... Second, it is Violently Opposed... Third, it is Accepted as being Self-Evident." - Arthur Schopenhauer (1778-1860) You've got to be taught To hate and fear, You've got to be taught From year to year, It's got to be drummed In your dear little ear You've got to be carefully taught. --from South Pacific

No comments: